If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-9d-22=0
a = 1; b = -9; c = -22;
Δ = b2-4ac
Δ = -92-4·1·(-22)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-13}{2*1}=\frac{-4}{2} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+13}{2*1}=\frac{22}{2} =11 $
| 5x-14=-8+3x | | 2m=-1=m+6 | | (q-2)/3-(q-4)/4=5 | | 40=8/12y | | 5+3a−6a=11 | | 2/5x+4=-16 | | 2a^2-57a+81=0 | | 12.5=y=-1.25 | | -3(n-9)+7=4 | | 5(3i+8)-1=129 | | 5^(3x)+8=50 | | 3n4=-62 | | 2x+4=4+2x | | 4x+7x-22=55 | | 1.59+(0.29x)=5.07 | | 5x-10=12x+25 | | v-6=18 | | -95=-5(6i+1) | | 1-8v^2=-5 | | 2x+4=-1+2 | | -3+v/5=0.2 | | -96=8(i-5) | | 79=6(-6a-5) | | 9+6x+10x=75 | | 7–3(x–5)=4(3+2x)–10x | | 6/3=x/3 | | 105=-7(i-8) | | 79=6(-6a-5 | | 16x+20=-4x^2 | | 3n=4/8 | | 3m-12=3-(m-5) | | 3x-29=76 |